TEACHERS WITHOUT BORDERS PROGRAMME

BROUGHT TO YOU BY

With grateful thanks to our associate partners, The <u>National Department of Basic Education</u>, The <u>Independent Examinations Board</u>, <u>Siyavula Education</u>, <u>Smarticks</u>, <u>Noteshare</u>, <u>Lemonlicious</u>, <u>datacentrix</u>, and most of all, to the schools and teachers from both the public and private education sectors who as founder contributors, have lent content to the <u>Teachers without Borders programme</u>, for the benefit of all South Africa's learners.

In Bill Gates words, at the Mandela Day 'Living Together' address: "Maintaining the quality of this country's higher education system while expanding access to more students will not be easy. But it's critical to South Africa's future" – working together, we can help achieve this."

Contributing schools to date:

Clifton School	Milnerton High	Rustenburg Girls' High	St Peter's
Durban Girls'	Northwood High	St Anne's DC	St Stithians
Fairmont High	Roedean	St John's DSG	Wynberg Boys' High
Herzlia High	Rondebosch Boys'	St Mary's DSG Kloof	Wynberg Secondary

JUNE EXAMINATION - 2019 MEMORANDUM: GRADE 11 PHYSICAL SCIENCE

[Total marks = 130]

SECTION A: MULTIPLE CHOICE

- 1.1 В
- 1.2 D
- 1.3 D
- 1.4 D
- 1.5

Question 2:

2.1.1 Rate of change of position or displacement ✓ ✓

(2)

2.1.2 Distance

= Area under graph =
$$\frac{1}{2}$$
 bh \checkmark = 29,8 \checkmark
= $\frac{1}{2} \frac{(17,5)(v)}{(17,5)(v)}$
 $\therefore v = 3,41 \text{ m s}^{-1}$

2.1.3 Take motion north as positive
$$a = \frac{v_1 - v_1}{\Delta t} = \frac{0 - 3.41}{17.5 - 3.5} = -0.24 \text{ m s}^{-2} \text{ ie } 0.24 \text{ m s}^2 \text{ south}$$

$$\alpha = 0.24 \text{ m s}^{-2}$$
(3) Sauxl

- 2.1.4 When a net force, Fnet, is applied to an object of mass, m, it accelerates in the direction of the net force. ✓ The acceleration, a, is directly proportional to the net force and inversely proportional to the mass. ✓ (2)
- 2.1.5 Take motion north as positive

$$F_{\text{net}} = \text{ma} \checkmark$$

 $F_{\text{fk}} = (20)(-0.24) \checkmark = -4.87 \text{ N i.e. } 4.87 \text{ N south} \checkmark$

$$22.1 \quad V^2 = u^2 + 2as$$

$$0^2 = 4^2 + 2(-98)s$$

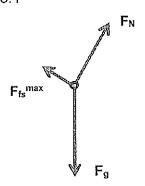
$$5 = 0.82m$$

(3)

22.2
$$S=uf+1/2at^2$$
 $t_{up=0,416}$ = $4(1,3)+1/2(-9.8)(1.3)^2$
 $t_{up=0,416}$ = $-3,08m$ le $3,08m$ high. (3)

2.2.3 $V=u+at$
 $0=-8,65+a(0,9)$
 $a=9,61ms^{-2}$ le $9,61ms^{-2}$ up. (3)

2.2.4 $f_{up}=-3,08m$ le $720,83N$ up (4)


2.2.5 $f_{up}=-3,08m$ le $720,83N$ up (4)

Page **2** of **7**

(6)

Question 3:

3.1

F_N = normal force ✓

 F_{fs}^{max} = maximum static frictional force \checkmark

F_g = gravitational force ✓

(-1 if relative magnitudes are incorrect)

(3)

(1)

(4)

3.2
$$\mu_s = \frac{F_{fs}^{mex}}{F_N} \checkmark = \frac{1382 \checkmark}{(240)(9.8)\cos(36^\circ) \checkmark} = \frac{0.73 \checkmark}{1702.181}$$
 (4)

3.3.1 Greater than ✓

3.3.2 $F_{fs}^{max} = \mu_s F_N \checkmark (\mu_s \text{ is constant})$ $\therefore F_{fs}^{max} \propto F_N \checkmark$

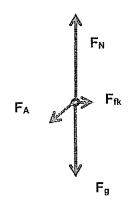
Inclined plane:

 $F_N = mgcos\theta$

∴ F_N < mg

Horizontal surface:

 $F_N = mg$


 \therefore F_N is greater on the horizontal surface

 $\therefore F_{fs}^{\text{max}}$ is greater on the horizontal surface

[12]

Question 4: Newton's Laws of Motion

4.1.1

F_N = normal force ✓

F_{fk} = kinetic frictional force ✓

F_g = gravitational force ✓

F_A ≃ applied force ✓

(-1 if relative magnitudes are incorrect:

$$F_N = F_g + F_{Ay}$$

 $F_{Ax} > F_{fk}$

(4)

4.1.2 Take motion to the left as positive
$$F_{net} = ma \checkmark$$

480
$$\cos(37^\circ) \checkmark - F_{fk} = (200)(0,9) \checkmark$$

 $\therefore F_{fk} = 203.35 \text{ N} \checkmark$

4.2.1 Inct=ma LEFT

Fig-T=ma

$$T-Fg = ma$$
 $T-Fg = ma$
 $T-Fg = ma$
 $T-Fg = ma$
 $T-Fg = ma$
 $T-Gg = 0.4a$
 $T-Gg = 0.4a$

$$5,88-0,6a = 0,4a+3,92$$

$$a = 1,96ms^{-2}$$
(5)

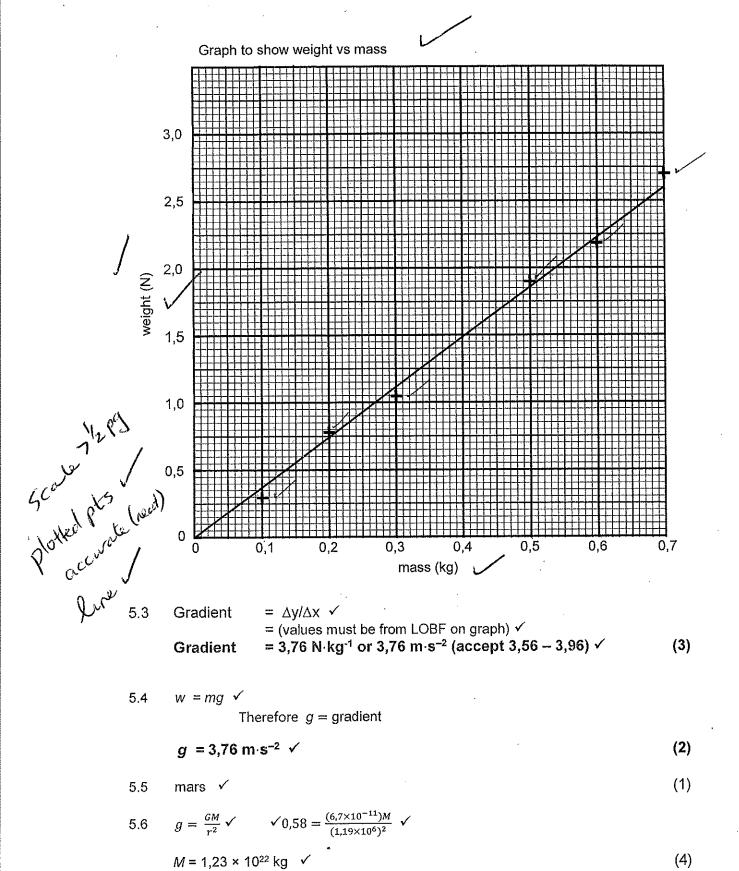
- 4.2.2 When object A exerts a force on object B, object B simultaneously exerts an oppositely directed force of equal magnitude on object A. ✓✓
- 4.2.3 Force of the 0,5 kg mass down on the pan.

18)

(6)

Question 5:

- 5.1 Weight is the gravitational force that the earth exerts on an object (on or near its surface) ✓ while mass is the quantity of matter in a body. ✓ (2)
- 5.2 Graph – on answer sheet Heading ✓


y-axis title and unit ✓

x-axis title and unit ✓

scale (plotted points > 1/2 graph paper) ✓

plotted points (accurate and visible to within half a small square) 🗸

line of best fit ✓

Page 5 of 7

[18]

Question 6 N=CXV = 1,5 × 0,16 6.1.1 $= 1.5 \times 0.16 \checkmark$ = 0, 24 mol (3)= 0,24 mol√ 6.1.2 $n = m/M \checkmark$ = 15/100√ = 0,15 mol√ HNO₃ is the limiting reagent√ (4) $HNO_3: CaCO_3 = 2:1$ 6.2 $n = v/V_m \checkmark$ $= 3,36/22,4\checkmark$ = 0,15 mol Cl₂ produced ✓ n (NaCi) reacted = 0,15 x 2 = 0,3 mol√ m (NaCl) reacted = n x M√ $= 0.3 \times 58.5 \checkmark$ = 17,55 g✓ % purity = 17,55/20 x 100 = 87,8 %✓ (8)[15] **Question 7:** NH₃✓ 7.1 7.2 KBr√ 7.3 Zn√ CF4V Ne 7.4 7.5 Ne✓ 7.6 SiO₂√ [6] **Question 8:** 8.1.1 An intramolecular bond occurs between atoms within molecules ✓ ✓ (2) 8.1.2 An intermolecular force is a weak force of attraction between molecules, ions or atoms of noble gases ✓ ✓ (2)8.2.1 London Forces√ (1) (2) 8.2.2 Pure Covalent Bond ✓ ✓ Although Iodine and bromine both have London intermolecular forces√, 8.3 lodine has more electrons ✓ and therefore sets up larger tempory dipoles ✓.

More energy is needed ✓to overcome the stronger London forces in Iodine.

(4)

8.4 A large amount of energy is needed to break the Many Strong electrostatic forces / in a crystal lattice. believe to so not (3)

8.5.1 ion-dipole

8.5.2 ammonia Both ammonia and water have strong hydrogen bonds. The IMF's need to be of similar strength for a substance to dissolve in another (3)

[Total marks = 130]