November Exam Memorandum

Grade 8 Mathematics

Marks: 150
Time: 2 hours

Please Note

Read the following instructions carefully before answering the questions:

1. This answer paper consists of 12 pages and 2 sections.
2. There are other possible ways to answer some of the questions than those answers given here. However, the final answer should still be the same.
3. Should you find any errors in the test during your moderation please do let us know via email: mathsatsharp@seartec.co.za so that we can correct it as soon as possible. We really appreciate your help towards making this a fantastic free resource for all maths teachers across South Africa.

Section 1 - Algebra

Question 1

1.1. $\sqrt[3]{13824}$

Prime Factorize $=\sqrt[3]{2^{9} \times 3^{3}}$
Answer $=2^{3} \times 3=8 \times 3=24$
$1.2868=2 \times 2 \times 7 \times 31$
$948=2 \times 2 \times \quad 31 \times 3$
$512=2 \times 2 \times 31 \times \quad 2 \times 2 \times 2$ (For prime factorizing)
$\mathrm{HCF}=2 \times 2 \times 31=124$
LCM $=4 \times 7 \times 31 \times 3 \times 2 \times 2 \times 2=20832$ $\sqrt{ }$
1.3.
1.3.1. $\frac{-48+6}{-7}+(-3)(-4)(-2)$
(3) 1.3.2. $\sqrt{(-8)(-2)}+\sqrt[3]{(-8)(27)}$
$=\frac{-42}{-7}-24$
\checkmark
$=\sqrt{16}+\sqrt[3]{-216}$
$=6-24 \quad \sqrt{ }$
$=4-6$
$=-2$
1.4. 1.4.1. $1007996550=1.00799655 \times 10^{9} \quad V$
1.4.2. $6302520=6.30252 \times 10^{6}$
1.5. 1.5.2. $4.32 \times 10^{4}=43200$
1.5.2. $9.0045 \times 10^{5}=900450$
1.6.
1.6.1. $\frac{x^{2} y^{3}}{\left(x^{2}\right)^{3}} \div \frac{\left(x^{3} y^{4}\right)^{0}}{x^{4} y}$
(4) 1.6.2. $\frac{\sqrt{x^{4} y^{6}}}{z^{2}} \times \frac{z^{4} y^{3}}{x^{4}}$

$$
\begin{aligned}
& =\frac{x^{2} y^{3}}{x^{6}} \times \frac{x^{4} y}{1} \\
& =\frac{x^{6} y^{4}}{x^{6}} \\
& =y^{4}
\end{aligned}
$$

$$
\sqrt{ } V
$$

$$
\begin{equation*}
=\frac{x^{2} y^{3}}{z^{2}} \times \frac{z^{4} y^{3}}{x^{4}} \tag{2}
\end{equation*}
$$

$$
\begin{aligned}
& =\frac{x^{2} y^{6} z^{4}}{x^{4} z^{2}} \\
& =\frac{y^{6} z^{2}}{x^{2}}
\end{aligned}
$$

\checkmark
1.6.
1.7. 1.7.1. The value of the position squared plus the value of the position.

OR $\quad n^{2}+n$
OR add 2 more than was added to the previous number
(2)
1.7.2. 90
$\sqrt{ } \sqrt{ }$

Question 2

2.1. 2.1.1. 4 terms
2.1.2. -12
2.1.3. $-\frac{3}{5}$
\checkmark for negative \checkmark for $\frac{3}{5}$
2.1.4. $4 x^{5}-\frac{3}{5} x^{3}+7 x-12 \quad$ if $x=-3$
$=4(-3)^{5}-\frac{3}{5}(-3)^{3}+7(-3)-12$
$=4(-243)-\frac{3}{5}(-27)-21-12$
$=-972+16 \frac{1}{5}-33$
$=-988 \frac{4}{5}$
2.2. 2.2.1. $2 x\left(3 x^{2}-4 x+7\right)-3 x\left(2 x^{2}+8 x-9\right)$
$=6 x^{3}-8 x^{2}+14 x-6 x^{2}-24 x^{2}+27 x$
$\sqrt{ }$ V
$=-32 x^{2}+41 x$
2.2.2. $\frac{5 x^{4}+15 x^{2}-25 x}{5 x}$

$$
\begin{align*}
& =\frac{5 x^{4}}{5 x}+\frac{15 x^{2}}{5 x}-\frac{25 x}{5 x} \tag{2}\\
& =x^{3}+3 x-5
\end{align*}
$$

2.3. 2.3.1. $\frac{x}{8}+9=2$

$$
\begin{align*}
& \frac{x}{8}=-7 \tag{2}\\
& x=-56
\end{align*}
$$

$$
\text { 2.3.2. } \begin{gather*}
\frac{3 x}{5}-7=5 \tag{3}\\
\frac{3 x}{5}=12 \\
3 x=60 \\
x=20
\end{gather*}
$$

$$
\begin{aligned}
& 20=2(x)+2(x-2) \\
& 20=2 x+2 x-4 \\
& 24=4 x
\end{aligned}
$$

$$
x=6 \quad \sqrt{ }
$$

The first side is 6 cm and the second side is 4 cm . $\sqrt{ }$

Question 3

3.1.
(6)

Fraction	Decimal	Percentage
$\frac{2}{3}$	$0.6 \dot{6}$	$66 \frac{2}{3} \%$
$\frac{13}{20}$	0.65	65%
$\frac{41}{50}$	0.82	82%

3.2. 3.2.1. Jamie $=12 \%=0.12$

Anita $=0.3 \quad$ and Thando $=\frac{1}{4}=0.25$
\therefore Anita does the most work.
3.2.2. Work done $=12 \%+30 \%+25 \%$

$$
\sqrt{ }
$$

= 67\%

Still to be done $=100 \%-67 \%$
= 33\%

Question 4

4.1.

\mathbf{x}	1	2	3	4	6	8	12	16
$\mathbf{y}_{\mathbf{1}}$	36	32	28	24	16	8	-8	-24
$\mathbf{y}_{\mathbf{2}}$	36	18	12	9	6	$4 \frac{1}{2}$	3	$2 \frac{1}{4}$

4.2. $y_{1}=-4 x+40$ OR subtract 4 from the previous number $\quad V$
$y_{2}=36 \div x \quad$ OR 36 divided by the one number to get the second number.
4.3. $\quad y_{1}$ is decreasing
y_{2} is also decreasing.
4.4.

Marks for graph:
Correct scales for x and y (not necessarily as has been done here) $\sqrt{ }$
Correct plotting of coordinates for both graphs. $\sqrt{ } \sqrt{ }$
Correct lines for both graphs and labeling of graphs.
4.5. Y 2 is the correct graph $\sqrt{ }$

Any valid reason; some suggestions include:
Y1 goes into the negative numbers which is impossible for the value of something to do.

Y2, keeps decreasing but will not reach zero, which the value of something also does. \checkmark

Question 5

5.1. The chance of choosing a white marble is $\frac{4}{16}$ or $\frac{1}{4}$
5.2. The chance of choosing a green marble is 0 \checkmark
5.3. The chance of choosing a red or a blue marble is $\frac{4+4}{16}=\frac{8}{16}$ or $\frac{1}{2}$

Section 2 - Geometry

Question 6

6.1. Construct the following without the use of a protractor.
6.1.1. These steps are taken from www.mathsisfun.com

1. Place the compass at one end of line segment.
2. Adjust the compass to slightly longer than half the line segment length.
3. Draw arcs above and below the line.
4. Keeping the same compass width, draw arcs from other end of line.
5. Place ruler where the arcs cross, and draw the line segment.

Marks for: \quad Arcs above and below the line that intersect Line segment drawn from the two intersecting arcs $\sqrt{ }$ Perpendicular line marked and labelled
6.1.2. Steps:

1. Draw a 4 cm line.
2. Draw an arc with a protractor that measures 4 cm from one end of the line. \downarrow
3. Draw a second arc of the same size as the first
4. Connect the ends of the first line to the intersection of the two arcs.
5. Worked neatly and labelled points
6.2. 6.2.1. B
6.2.2. E
6.2.3. A
6.2.4. C
6.2.5. D
6.3. 6.3.1. Similar

They have the same shape, but not the same size. $\sqrt{ }$
6.3.2. Congruent
(2)

They are the same shape (rhombus) and the same size (equal sides and angles) $\sqrt{ }$

Question 7

7.1. $D \hat{C} E=90^{\circ}$
$\sqrt{ } \quad$ Co-Interior angles, $\mathrm{AB} \| \mathrm{CE}$. $\sqrt{ }$
7.2. $B \hat{E} C=E \hat{C} F=56^{\circ} \quad V \quad$ Corresponding angles, $B E \| A C \quad V$
$180^{\circ}=A \hat{C} D+D \hat{C} E+E \hat{C} F \quad \checkmark \quad$ Angles on a straight-line $\quad \checkmark$
$\therefore A \hat{C} D=180^{\circ}-90^{\circ}-56^{\circ}$
$\therefore A \hat{C} D=34^{\circ}$
7.3. Congruent

They have the same shape and size $\sqrt{ }$
7.4. Trapezium, one set of sides are parallel. $\checkmark V$

Question 8

8.1. $\quad P R^{2}=P Q^{2}+Q R^{2}$
$P R^{2}=(15)^{2}+(8)^{2}$
$P R^{2}=225+64$
$\sqrt{P R^{2}}=\sqrt{289}$
$\therefore P R=17 \mathrm{~cm}$
8.2. $\quad \mathrm{DF}$ is the longest side.
$\therefore D F^{2}=(4 \sqrt{13})^{2}$
$\therefore D F^{2}=208$
And: $\quad D E^{2}+E F^{2}=(8)^{2}+(12)^{2} \quad V$
$D E^{2}+E F^{2}=64+144=208$
$D F^{2}=D E^{2}+E F^{2} \quad$ And $\triangle \mathrm{DEF}$ is a right angles triangle proved through Pythagoras.
8.3. 8.3.1. Circumference of semi-circle $=\frac{1}{2} \times 2 \pi r$

$$
\begin{aligned}
& =\pi \times 10.5 \mathrm{~mm} \\
& =32.99 \mathrm{~mm}
\end{aligned}
$$

Base length of triangle $=\sqrt{13^{2}-10^{2}}$

$$
\begin{aligned}
& =\sqrt{169-100} \\
& =\sqrt{69} \\
& =8.31 \mathrm{~mm}
\end{aligned}
$$

Length of rectangle $=2 \times 10.5 \mathrm{~mm}$

$$
=21 \mathrm{~mm}
$$

\therefore Perimeter of shape $=$ Circumference of semi-circle $+10 \mathrm{~mm}+$ base of rectangle +
base of triangle +13 mm

$$
\begin{aligned}
& =32.99 \mathrm{~mm}+10 \mathrm{~mm}+21 \mathrm{~mm}+8.31 \mathrm{~mm}+13 \mathrm{~mm} \\
& =85.3 \mathrm{~mm} \quad \sqrt{ }
\end{aligned}
$$

8.3.2. Area of semi-circle $=\frac{1}{2} \times \pi r^{2}$

$$
\begin{aligned}
& =\frac{1}{2} \times \pi(10.5)^{2} \\
& =173.18 \mathrm{~mm}^{2}
\end{aligned}
$$

Area of rectangle $=l \times b$

$$
\begin{aligned}
& =10 \mathrm{~mm} \times 21 \mathrm{~mm} \\
& =210 \mathrm{~mm}^{2}
\end{aligned}
$$

Area of triangle $=\frac{1}{2} b \times \perp h$

$$
\begin{aligned}
& =\frac{1}{2} \times 8.31 \mathrm{~mm} \times 10 \\
& =41.55 \mathrm{~mm}^{2} \quad 1 / 2 \text { mark }
\end{aligned}
$$

Total Area $=$ Area of semi-circle + area of rectangle + area of triangle

$$
\begin{align*}
& =173.18 \mathrm{~mm}^{2}+210 \mathrm{~mm}^{2}+41.55 \mathrm{~mm}^{2} \\
& =424.73 \mathrm{~mm}^{2} \tag{3}
\end{align*}
$$

8.4. \quad 8.4.1.1. The net needs to have three sets of identical rectangles, with measurements Indicated V

The net can be any of the following $\sqrt{ } \sqrt{ }$

8.4.1.2. \quad Surface Area $=2(l b+l h+b h)$

$$
=2(31 \mathrm{~cm} \times 20 \mathrm{~cm}+31 \mathrm{~cm} \times 8 \mathrm{~cm}+20 \mathrm{~cm} \times 8 \mathrm{~cm})
$$

$\sqrt{ } \sqrt{ }$ (1 for correct substitution and 1 for converting 80 mm to 8 cm).

$$
\begin{align*}
& =2\left(620 \mathrm{~cm}^{2}+248 \mathrm{~cm}^{2}+160 \mathrm{~cm}^{2}\right) \\
& =2056 \mathrm{~cm}^{2} \tag{3}
\end{align*}
$$

8.4.2. Volume $=l \times b \times h$

$$
=(31 \mathrm{~cm}-4 \mathrm{~cm}) \times 20 \mathrm{~cm} \times 8 \mathrm{~cm}
$$

$\sqrt{ }$ one for substituting and correct formula and one for subtracting 4 from 31.

$$
\begin{aligned}
& =27 \mathrm{~cm} \times 160 \mathrm{~cm}^{2} \\
& =4320 \mathrm{~cm}^{2}
\end{aligned}
$$

8.5. Give the names of the following 3D-shapes.
8.5.1. Hexagonal prism.
\checkmark
(1) 8.5.2. Dodecahedron $\sqrt{ }$
8.5.3. Icosahedron
\checkmark
(1) 8.5.4. Octahedron $\sqrt{ }$
8.5.5. Square-based pyramid
(1)

Question 9

9.1. $\quad \mathrm{A} \rightarrow \mathrm{A}^{\prime}=$ translated one unit up and 3 units right
$B \rightarrow B^{\prime}=$ reflected about the x-axis
$C \rightarrow C^{\prime}=$ reflected about the y-axis
$D E F \rightarrow D^{\prime} E^{\prime} F^{\prime}=$ Enlarged by a factor of $\frac{3}{2}$ or $1 \frac{1}{2}$
9.2. 9.2.1. $G(-7 ; 3) \rightarrow G^{\prime}(-7 ;-3)$
9.2.2. $\mathrm{H}(2 ;-3) \rightarrow \mathrm{H}^{\prime}\left(\frac{2}{3} ;-1\right)$

Question 10

10.1.	0	$0,4,9$	
1	$3,7,8,9,9$		
2			
3	4,6	$\sqrt{ }$ Mark for correct order.	
4		$\sqrt{ }$ Mark for stem (i.e. $0-5)$	

10.2. 10.2.1. Mean $=\frac{0+4+9+13+17+18+19+19+34+36+51}{11}$

$$
\begin{aligned}
& =\frac{220}{11} \\
& =20
\end{aligned}
$$

10.2.2. Mode $=19$
10.2.3. Median $=18$
10.2.4. Range $=51-0=51$
$\sqrt{ }$
$\sqrt{ }$
$\sqrt{ }$
$\sqrt{ }$
(2)

Marks for: correct labels V
Leaving spaces between bars $\sqrt{ }$
And correctly drawing bars $\sqrt{ }$
10.4. The average would be increased by five runs $\sqrt{ }$

Because, 5 runs per player times 11 gives 55 extra runs with an average of 5 extra runs, which would be added to the average.

