

November Exam Memorandum

Grade 8 Mathematics

Marks: 150

Time: 2 hours

Please Note

Read the following instructions carefully before answering the questions:

- 1. This answer paper consists of 12 pages and 2 sections.
- 2. There are other possible ways to answer some of the questions than those answers given here. However, the final answer should still be the same.
- 3. Should you find any errors in the test during your moderation please do let us know via email: <u>mathsatsharp@seartec.co.za</u> so that we can correct it as soon as possible. We really appreciate your help towards making this a fantastic free resource for all maths teachers across South Africa.

Section 1 - Algebra

Question 1

1.1.	$\sqrt[3]{13824}$					(2)
	Prime Factorize	$= \sqrt[3]{2^9 \times 3^3}$	\checkmark			
	Answer = $2^3 \times 3$	$3 = 8 \times 3 = 24$	\checkmark			
1.2	868 = 2 x 2 x 7 x	x 31				(3)
	948 = 2 x 2 x	31 x 3				
	512 = 2 x 2 x	31 x	2 x 2 x 2		(For prime factorizing)	
	HCF = 2 x 2 x 3	1 = 124		\checkmark		
	LCM = 4 x 7 x 3	1 x 3 x 2 x 2 x 2	2 = 20 832	\checkmark		
SEA	ARTEC	Proud distrib	outor of: SH/	ARP		

www.mathsatsharp.co.za

1.3. 1.3.1. $\frac{-48+6}{-7} + (-3)(-4)(-2)$ (3) 1.3.2. $\sqrt{(-8)(-2)} + \sqrt[3]{(-8)(27)}$ (3)

$$= \frac{-42}{-7} - 24 \qquad \sqrt{\qquad} = \sqrt{16} + \sqrt[3]{-216} \qquad \sqrt{\qquad} = 6 - 24 \qquad \sqrt{\qquad} = 4 - 6 \qquad \sqrt{\qquad} = -18 \qquad \sqrt{\qquad} = -2 \qquad \sqrt{\qquad}$$

1.4. 1.4.1. 1 007 996 550 = 1.00799655 x 10⁹
$$\sqrt{}$$
 (1)
1.4.2. 6 302 520 = 6.30252 x 10⁶ $\sqrt{}$ (1)

- 1.5. 1.5.2. $4.32 \times 10^4 = 43\,200$ $\sqrt{}$ (1)
 - 1.5.2. $9.0045 \times 10^5 = 900\,450$ $\sqrt{}$ (1)

1.6. 1.6.1.
$$\frac{x^2 y^3}{(x^2)^3} \div \frac{(x^3 y^4)^0}{x^4 y}$$
 (4) 1.6.2. $\frac{\sqrt{x^4 y^6}}{z^2} \times \frac{z^4 y^3}{x^4}$ (2)

$$= \frac{x^2 y^3}{x^6} \times \frac{x^4 y}{1} \qquad \sqrt{\sqrt{\sqrt{1}}} \qquad = \frac{x^2 y^3}{z^2} \times \frac{z^4 y^3}{x^4} \qquad \sqrt{1}$$
$$= \frac{x^6 y^4}{x^6} \qquad = \frac{x^2 y^6 z^4}{x^4 z^2}$$
$$= y^4 \qquad \sqrt{1} \qquad = \frac{y^6 z^2}{x^2} \qquad \sqrt{1}$$

Question 2

- 2.1. 2.1.1. 4 terms $\sqrt{}$ (1)
 - 2.1.2. -12 $\sqrt{}$ (1)
 - 2.1.3. $-\frac{3}{5}$ $\sqrt{1000}$ for negative $\sqrt{1000}$ for $\frac{3}{5}$ (2)
 - 2.1.4. $4x^5 \frac{3}{5}x^3 + 7x 12$ if x = -3 (3) $= 4(-3)^5 - \frac{3}{5}(-3)^3 + 7(-3) - 12$ $\sqrt{}$ $= 4(-243) - \frac{3}{5}(-27) - 21 - 12$ $= -972 + 16\frac{1}{5} - 33$ $\sqrt{}$ $= -988\frac{4}{5}$ $\sqrt{}$

2.2. 2.2.1.
$$2x(3x^2 - 4x + 7) - 3x(2x^2 + 8x - 9)$$

= $6x^3 - 8x^2 + 14x - 6x^2 - 24x^2 + 27x$ $\sqrt{\sqrt{}}$
= $-32x^2 + 41x$ $\sqrt{}$

2.2.2.
$$\frac{5x^4 + 15x^2 - 25x}{5x}$$

$$= \frac{5x^4}{5x} + \frac{15x^2}{5x} - \frac{25x}{5x}$$

$$= x^3 + 3x - 5$$
(2)

2.3. 2.3.1.
$$\frac{x}{8} + 9 = 2$$

 $\frac{x}{8} = -7$ \sqrt{x}
 $x = -56$ \sqrt{x}

Proud distributor of: SHARP

SEARTEC[®]

(2)

2.3.2.
$$\frac{3x}{5} - 7 = 5$$
 (3)
 $\frac{3x}{5} = 12$ $\sqrt{}$
 $3x = 60$ $\sqrt{}$
 $x = 20$ $\sqrt{}$
 $P = 2l + 2b$ (3)
 $20 = 2(x) + 2(x - 2)$ $\sqrt{}$
 $20 = 2x + 2x - 4$
 $24 = 4x$
 $x = 6$ $\sqrt{}$
The first side is 6cm and the second side is 4cm. $\sqrt{}$

[20]

(6)

(2)

Question 3

3.1.

2.4.

Fraction	Decimal	Percentage
$\frac{2}{3}$	0.6Ġ	$66\frac{2}{3}\%$
$\frac{13}{20}$	0.65	65%
$\frac{41}{50}$	0.82	82%

3.2. 3.2.1. Jamie = 12% = 0.12

and Thando = $\frac{1}{4}$ = 0.25 Anita = 0.3 \checkmark $\sqrt{}$

: Anita does the most work.

Question 4

4.1.

X	1	2	3	4	6	8	12	16
y 1	36	32	28	24	16	8	-8	-24
y 2	36	18	12	9	6	$4\frac{1}{2}$	3	$2\frac{1}{4}$

4.2. $y_1 = -4x + 40$ OR subtract 4 from the previous number $\sqrt{}$ (2)

$$y_2 = 36 \div x$$
 OR 36 divided by the one number to get the second number. $\sqrt{100}$

 $\sqrt{}$

 $\sqrt{}$

4.3. y_1 is decreasing

(5)

(2)

(3)

Marks for graph:

Correct scales for x and y (not necessarily as has been done here)	\checkmark
Correct plotting of coordinates for both graphs.	$\sqrt{\sqrt{1}}$
Correct lines for both graphs and labeling of graphs.	

4.5. Y2 is the correct graph $\sqrt{}$

Any valid reason; some suggestions include:

Y1 goes into the negative numbers which is impossible for the value of something to do. $$\sqrt{}$$

Y2, keeps decreasing but will not reach zero, which the value of something also does. \surd

Question 5

5.1.	The chance of choosing a white marble is $\frac{4}{16}$ or $\frac{1}{4}$	\checkmark	(1)
------	--	--------------	-----

- 5.2. The chance of choosing a green marble is 0 $\sqrt{}$ (1)
- 5.3. The chance of choosing a red or a blue marble is $\frac{4+4}{16} = \frac{8}{16} \text{ or } \frac{1}{2} \quad \sqrt{\sqrt{}}$ (2)

[4]

Section 2 – Geometry

Question 6

- 6.1. Construct the following without the use of a protractor.
 - 6.1.1. These steps are taken from <u>www.mathsisfun.com</u>
 - Place the compass at one end of line segment.
 - 2. Adjust the compass to slightly longer than half the line segment length.
 - 3. Draw arcs above and below the line.
 - 4. Keeping the same compass width, draw arcs from other end of line.
 - 5. Place ruler where the arcs cross, and draw the line segment.
 - Marks for:Arcs above and below the line that intersect $\sqrt{\sqrt{10}}$ Line segment drawn from the two intersecting arcs $\sqrt{10}$ Perpendicular line marked and labelled $\sqrt{10}$

6.1.2. Steps:

1.

- 1. Draw a 4cm line. $\sqrt{}$
- 3. Draw a second arc of the same size as the first $\sqrt{}$
- 4. Connect the ends of the first line to the intersection of the two arcs. $\sqrt{}$
- 5. Worked neatly and labelled points $\sqrt{}$

6.2. 6.2.1. B \checkmark 6.2.2. E \checkmark 6.2.3. A \checkmark 6.2.4. C \checkmark 6.2.5. D \checkmark

(5)

(4)

(5)

6.3.	6.3.1.	Similar		\checkmark		
		They have the same	shape,	but not the same size. \checkmark		(2)
	6.3.2.	Congruent		\checkmark		(2)
		They are the same sh	nape (rh	nombus) and the same size (equal sic	les and angles)) √
						[18]
<u>Ques</u>	tion 7					
7.1.	$D\hat{C}E =$: 90°	\checkmark	Co-Interior angles, AB CE.	\checkmark	(2)
7.2.	$B\hat{E}C =$	$E\hat{C}F = 56^{\circ}$	\checkmark	Corresponding angles, BE AC	\checkmark	
	180° =	$A\hat{C}D + D\hat{C}E + E\hat{C}F$	\checkmark	Angles on a straight-line	\checkmark	
	∴ AĈD	$= 180^{\circ} - 90^{\circ} - 56^{\circ}$				
	∴ AĈD	= 34°	\checkmark			(5)
7.3.	Congru	uent	\checkmark			
	They h	ave the same shape a	and size	\sim $$		(2)
7.4.	Trapez	zium, one set of sides a	are para	allel. $\sqrt{}$		(2)
						[11]

Question 8

8.1.
$$PR^{2} = PQ^{2} + QR^{2} \qquad \sqrt{}$$
$$PR^{2} = (15)^{2} + (8)^{2} \qquad \sqrt{}$$
$$PR^{2} = 225 + 64 \qquad \sqrt{PR^{2}} = \sqrt{289}$$
$$\therefore PR = 17cm \qquad \sqrt{}$$

$$DF^{2} = (4\sqrt{13})^{2} \qquad \sqrt{$$

$$DF^{2} = 208$$
And: $DE^{2} + EF^{2} = (8)^{2} + (12)^{2} \qquad \sqrt{$

$$DE^{2} + EF^{2} = 64 + 144 = 208$$

$$DF^{2} = DE^{2} + EF^{2} \qquad \text{And } \Delta DEF \text{ is a right angles triangle proved through Pythagoras. } \sqrt{(3)}$$
8.3.
8.3.1. Circumference of semi-circle $=\frac{1}{2} \times 2\pi r$

$$= \pi \times 10.5mm$$

$$= 32.99mm \qquad \sqrt{}$$
Base length of triangle $= \sqrt{13^{2} - 10^{2}}$

$$= \sqrt{169 - 100}$$

$$= \sqrt{69}$$

$$= 8.31 mm \qquad \sqrt{}$$
Length of rectangle = 2 x 10.5mm
$$= 21mm \qquad \sqrt{}$$

$$\therefore \text{ Perimeter of shape = Circumference of semi-circle + 10mm + base of rectangle + base of triangle + 13mm$$

$$= 32.99mm + 10mm + 21mm + 8.31mm + 13mm$$

(4)

 $\sqrt{}$

 $\sqrt{}$

 $\sqrt{}$

 $\sqrt{}$

 $\sqrt{}$

8.3.2. Area of semi-circle = $\frac{1}{2} \times \pi r^2$

$$=\frac{1}{2} \times \pi \ (10.5)^2$$

= 85.3mm

$$= 173.18mm^2$$

Area of rectangle = $l \times b$

 $= 10mm \times 21mm$

$$= 210mm^2$$

Area of triangle =
$$\frac{1}{2} b \times \perp h$$

= $\frac{1}{2} \times 8.31 mm \times 10$
= $41.55 mm^2$ ½ mark

Total Area = Area of semi-circle + area of rectangle + area of triangle

$$= 173.18mm^2 + 210mm^2 + 41.55mm^2$$

8.4. 8.4.1.1. The net needs to have three sets of identical rectangles, with measurements Indicated $\sqrt{}$

8.4.1.2. Surface Area = 2(lb + lh + bh)

 $= 2(31cm \times 20cm + 31cm \times 8cm + 20cm \times 8cm)$

 $\sqrt{\sqrt{}}$ (1 for correct substitution and 1 for converting 80mm to 8cm).

$$= 2(620cm^{2} + 248cm^{2} + 160cm^{2})$$

= 2 056cm^{2} $\sqrt{}$ (3)

8.4.2. Volume = $l \times b \times h$

SEARTE

 $= (31cm - 4cm) \times 20cm \times 8cm$

 $\sqrt{\sqrt{}}$ one for substituting and correct formula and one for subtracting 4 from 31.

 $= 27 cm \times 160 cm^2$

 $= 4 \ 320 cm^2$

 $\sqrt{}$

Proud distributor of: SHARP

Give the names of the following 3D-shapes. 8.5.

8.5.1.	Hexagonal prism.	\checkmark	(1)	8.5.2.	Dodecahedron	\checkmark	(1)
8.5.3.	Icosahedron	\checkmark	(1)	8.5.4.	Octahedron	\checkmark	(1)
8.5.5.	Square-based pyramid	\checkmark	(1)				

Question 9

9.1.	$A \rightarrow A'$ = translated one unit up and 3 units right	\checkmark	(5)
	$B \rightarrow B'$ = reflected about the x-axis	\checkmark	
	$C \rightarrow C'$ = reflected about the y-axis	\checkmark	
	DEF \rightarrow D'E'F' = Enlarged by a factor of $\frac{3}{2}$ or $1\frac{1}{2}$	$\sqrt{2}$	

- 9.2. 9.2.1. G (-7; 3) \rightarrow G' (-7; -3) $\sqrt{}$ (1)
 - 9.2.2. H (2; -3) \rightarrow H' $\left(\frac{2}{3}; -1\right)$ (1) $\sqrt{}$

[7]

[27]

Question 10

10.1. 0	0, 4, 9		
1	3, 7, 8, 9, 9		
2			
3	4, 6		
4		\sqrt{Mark} for correct order.	
5	1	\sqrt{Mark} for stem (i.e. 0 – 5)	(2)

10.2.	10.2.1. Mean = $\frac{0+4+9+13+17+18+19+19+34+36+51}{11}$	\checkmark	
	$=\frac{220}{11}$		
	= 20	\checkmark	(2)
	10.2.2. Mode = 19	\checkmark	(1)
	10.2.3. Median = 18	\checkmark	(1)
	10.2.4. Range = 51 – 0 = 51	\checkmark	(1)

10.4. The average would be increased by five runs

SEARTEC

Because, 5 runs per player times 11 gives 55 extra runs with an average of 5 extra runs, which would be added to the average. $\sqrt{}$ (2)

 $\sqrt{}$

[12]

Grand Total [150]

Proud distributor of: SHARP