TEACHERS WITHOUT BORDERS PROGRAMME

BROUGHT TO YOU BY

With grateful thanks to our associate partners, The <u>National Department of Basic Education</u>, The <u>Independent Examinations Board</u>, <u>Siyavula Education</u>, <u>Smarticks</u>, <u>Noteshare</u>, <u>Lemonlicious</u>, <u>datacentrix</u>, and most of all, to the schools and teachers from both the public and private education sectors who as founder contributors, have lent content to the <u>Teachers without Borders programme</u>, for the benefit of all South Africa's learners.

In Bill Gates words, at the Mandela Day 'Living Together' address: "Maintaining the quality of this country's higher education system while expanding access to more students will not be easy. But it's critical to South Africa's future" – working together, we can help achieve this."

Contributing schools to date:

Clifton School	Milnerton High	Rustenburg Girls' High	St Peter's
Durban Girls'	Northwood High	St Anne's DC	St Stithians
Fairmont High	Roedean	St John's DSG	Wynberg Boys' High
Herzlia High	Rondebosch Boys'	St Mary's DSG Kloof	Wynberg Secondary

		20 November 2014
Grade 8	Mathematics	1½ hours
	Paper 1	100 marks
	Memorandum	

	Natural	Integer	Rational	Irrational	Real	Imaginary
-3		✓	✓		✓	
4π				✓	✓	
$\sqrt{-7}$						√
$\sqrt{36}$	√	✓	√		✓	

1 mark per line

<u>/4</u>/

Question 2

$$\overline{2.1} \quad 60\checkmark \tag{1}$$

$$2.3 \quad 6\checkmark$$

$$2.4 \quad -21\checkmark \tag{1}$$

$$2.5 1; 2; 3; 6; 9; 18. \checkmark \checkmark (2)$$

2.4
$$-21$$
 (1)
2.5 1; 2; 3; 6; 9; 18. $\checkmark\checkmark$ (2)
2.6 $\frac{10^7}{5 \times 10^4} = \frac{10^3}{5} \checkmark = 200 \checkmark$ (2)
2.7 $36 - 1\checkmark = 35\checkmark$ (2)

$$2.7 \quad 36 - 1\checkmark = 35\checkmark \tag{2}$$

/10/

Question 3

3.1

3.1.1
$$1\frac{1}{2} + 3\frac{2}{3}$$

 $= \frac{3}{2} + \frac{11}{3} \checkmark$
 $= \frac{9+22}{6} \checkmark$
 $= \frac{31}{6} \checkmark$
3.1.2 $1\frac{5}{16} \div 2\frac{11}{12}$
 $= \frac{21}{16} \div \frac{35}{12} \checkmark$
 $= \frac{21}{16} \times \frac{12}{35} \checkmark$
 $= \frac{9}{20} \checkmark$ (3)

3.2
$$\mathbb{C}\checkmark$$
 and $\mathbb{D}\checkmark$ (2)

$$4.1 \quad \frac{3}{35} \times 385 \checkmark = 33 \checkmark \tag{2}$$

4.2
$$44 - 12 = 32\checkmark$$

 $32 \div 8 = 4\checkmark$
 $4 \times 5 = 20\checkmark$
 \therefore Charles peeled 20 potatoes (3)

4.3
$$\frac{x}{z} = \frac{x}{y} \times \frac{y}{z}$$

$$\therefore \frac{x}{z} = \frac{2}{3} \times \frac{7}{5} \checkmark = \frac{14}{15} \checkmark$$

$$\therefore \frac{z}{x} = \frac{15}{14} \checkmark$$
(3)

Question 5

5.1
$$3rd\checkmark$$
 (1)
5.2 $2\checkmark$ (1)
5.3 $-1\checkmark$ (1)
5.4 $0\checkmark$ (1)
5.5 $2x^3 - 4x^2 + 3x - 1\checkmark$ (1)
(1)

$$6.1 \quad -4x + 6x - x \\ = x\checkmark$$

$$6.2 \quad -6x^2 + x^2$$

$$= -5x^2\checkmark$$

$$6.3 \quad -4(x + 2y)$$

$$= -4x\checkmark - 8y\checkmark$$

$$6.4 \quad \sqrt[3]{27x^{27}}$$

$$= 3\checkmark x^9\checkmark$$

$$6.5 \quad -3x^2y \times 4xy^3$$

$$= -12x^3y^4\checkmark\checkmark$$

$$6.6 \quad -(2x^2)^3$$

$$= -8\checkmark x^6\checkmark$$

$$6.7 \quad \frac{4x^4}{16x^{16}}$$

$$= \frac{1}{4x^{12}}\checkmark \checkmark$$

$$6.8 \quad 3x - x(2x + 1)$$

$$= 3x - 2x^2 - x\checkmark$$

$$= -2x^2 + 2x\checkmark$$

$$6.9 \quad \frac{6x^3 \times -4x^2}{-12x} - (2x)^4$$

$$= \frac{-24x^3}{-12x} - 16x^4\checkmark$$

$$= 2x^4\checkmark - 16x^4$$

$$= -14x^4\checkmark$$

$$(1)$$

Question 7

7.1
$$-3a\checkmark\checkmark$$
 (2)
7.2 $4x\checkmark-y\checkmark-2z\checkmark$ (3)
7.3 $-20x^4y^2\checkmark+5x^2y^5\checkmark$ (2)
7.4 $-x^2\checkmark+3y^2\checkmark$ (2)

8.1

$$8.1.1 \quad -\frac{12}{x} = -3$$

$$\therefore x = 4\checkmark$$
(1)

$$8.1.2 \quad x^2 = 25$$

$$\therefore x = \pm \checkmark 5 \checkmark$$
(2)

8.1.3
$$2x - 3 = 5$$

$$\therefore 2x = 8\checkmark$$

$$\therefore x = 4\checkmark$$
(2)

$$8.1.4 \quad -3(2x+3) = 4x - 4$$

$$\therefore -6x - 9\checkmark = 4x - 4$$

$$\therefore -10x = 5\checkmark$$

$$\therefore x = -\frac{1}{2}\checkmark$$
(3)

8.2

8.2.1
$$x - 5 + 2x = -14$$

 $\therefore 3x = -9\checkmark$
 $\therefore x = -3\checkmark$
8.2.2 $\sqrt[3]{2y + 1} - 5 + 2\sqrt[3]{2y + 1} = -14$
 $\therefore \sqrt[3]{2y + 1} = -3\checkmark$
 $\therefore 2y + 1 = -27\checkmark$
 $\therefore 2y = -28\checkmark$
 $\therefore y = -14\checkmark$ (4)

8.3
$$3x - 7 = 38$$

 $\therefore 3x = 45\checkmark$
 $\therefore x = 15 \text{ (Jonathan)} \checkmark$
But $x = 9\checkmark$
 $\therefore a.9 - 7 = 38\checkmark$
 $\therefore 9a = 45$
 $\therefore a = 5\checkmark$ (5)

<u>/19</u>/

9.1

9.1.1 11; 8; 5; 2;
$$-1\checkmark$$
 (1)

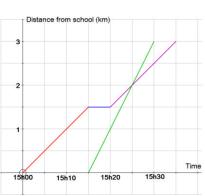
9.1.2 3; 6; 12; 24;
$$\frac{48}{\checkmark}$$
 (1)

9.1.3 4; 1; 6; 2; 8; 4; 10; 8;
$$12\checkmark$$
 (1)

$$9.2 \quad 36\checkmark\checkmark \tag{2}$$

9.3
$$200 \times 6\checkmark = 1200\checkmark$$
 (2)

Question 10

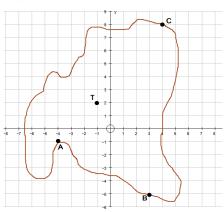

10.1 1 km ✓

10.2 5 minutes ✓

10.3 15h25✓

10.4 3 km in 15 minutes ✓

∴ 12 km/h✓


(1) (1)

(1)

(2)

<u>/5</u>/

Question 11

	Start	After first transformation	After second transformation
A	(-4; -1)	(1; −3) ✓	(1;3)✓
В	(3; -5)	(-5; -3)✓	(−2; 2) ✓
С	(4; 8)	(1; 2)✓	(−1; 2)✓

C✓ reaches the treasure!