TEACHERS WITHOUT BORDERS PROGRAMME

BROUGHT TO YOU BY

COMLINK

ieb
 assessment matters

datacentrix

basic education

Department:
Basic Education
REPUBLIC OF SOUTH AFRICA

With grateful thanks to our associate partners, The National Department of Basic Education, The Independent Examinations Board, Siyavula Education, Smarticks, Noteshare, Lemonlicious, datacentrix, and most of all, to the schools and teachers from both the public and private education sectors who as founder contributors, have lent content to the Teachers without Borders programme, for the benefit of all South Africa's learners.

In Bill Gates words, at the Mandela Day 'Living Together’ address: "Maintaining the quality of this country's higher education system while expanding access to more students will not be easy. But it's critical to South Africa's future" - working together, we can help achieve this."

Contributing schools to date:

Clifton School	Milnerton High	Rustenburg Girls' High	St Peter's
Durban Girls'	Northwood High	St Anne's DC	St Stithians
Fairmont High	Roedean	St John's DSG	Wynberg Boys' High
Herzlia High	Rondebosch Boys'	St Mary's DSG Kloof	Wynberg Secondary

1.1	B \checkmark	
1.2	D \checkmark	
1.3	A \checkmark	
1.4	C \checkmark	
1.5	C \checkmark	[5]
2.1	Latitude is the distance of a place $\checkmark \mathrm{N}$ and S of the equator \checkmark measured in degrees \checkmark and minutes	
2.2	A $=$ Arctic circle \checkmark	
	$B=$ Tropic of Cancer \checkmark	
	C = Equator \checkmark	
	D = Antarctic circle \checkmark	$4 \times 1=4$
2.3	$23,5 \checkmark{ }^{\circ} \mathrm{N} \checkmark$	$1 \times 2=2$
2.4	$90 \checkmark{ }^{\circ} \mathrm{N} \checkmark$	$1 \times 2=2$

3.1 East / West \checkmark
3.2 East / West \checkmark
3.3 Greenwich Meridian / Prime Meridian \checkmark
$3.4360 \checkmark$
3.5 International Date Line \checkmark
3.6 Time \checkmark
3.7 East \checkmark
3.8 East \checkmark
3.9 Greenwich Mean Time \checkmark
3.10 Lose \checkmark

Question 4:

4.1 Linear / Line scale \checkmark
$1 \times 1=1$
4.2 One unit on the ground \checkmark represents \checkmark twenty thousand units \checkmark on the earth's surface \checkmark

4.3 1:4000000 $\checkmark \checkmark$
4.4 Scale is a proportion \checkmark between the length on a map \checkmark and the length on the ground that it shows.

Question 5:

5.1	$34^{\circ} 19^{\prime} S \checkmark \checkmark 24^{\circ} 48^{\prime} E \checkmark \checkmark$ (negative marking)
$\left(16^{\prime}-22^{\prime}\right) \quad\left(45^{\prime}-51^{\prime}\right)$	

$5.234^{\circ} 54^{\prime} S \checkmark \checkmark 25^{\circ} 15^{\prime} E \checkmark \checkmark$ (negative marking) (51' $\left.-57^{\prime}\right) \quad\left(12^{\prime}-18^{\prime}\right)$
$5.24 .3 \mathrm{~cm} \checkmark \times 50000=\frac{\underline{215000}}{100000} \checkmark=2.15 \mathrm{~km} \checkmark \quad 2 \times 1=2$ $(4.2-4.4 \mathrm{~cm})$
$5.34 .5 \mathrm{~cm} \checkmark \times 50000=\underline{225000} \checkmark=2.25 \mathrm{~km} \checkmark$
100000
$2 \times 1=2$
$(4.4 \mathrm{~cm}-4.6 \mathrm{~cm})$

