1. $\frac{8}{24} \checkmark=\frac{1}{3} \downarrow$
2. Yes \checkmark as the first token is replaced, keeping the total number of tokens and the number of red tokens the same. $\checkmark \checkmark$

3. $\frac{1}{9} \checkmark \checkmark$
4. $\frac{1}{9} \times 100 \checkmark=11 \%$
5. $100-11 \checkmark=89 \%$
6. No \checkmark as the chances of winning are so much lower than winning. $\checkmark \checkmark$
7. $400 \times 5 \checkmark=R 2000 \checkmark$
8. $0,11 \vee \times 400 \vee=44$ people
9. $44 \times 10 \checkmark=R 440 \checkmark$
10.

a. $\frac{2}{9} \checkmark \checkmark(\checkmark$ denominator and \checkmark numerator $)$
b. $\frac{3}{9}=\frac{1}{3} \downarrow \downarrow$
c. $\frac{4}{9}$ レ
d. $\frac{3}{9}=\frac{1}{3} \downarrow \downarrow$
e. 0
12. The game can be adjusted by making it an equal chance of winning and losing \checkmark so you could have only 2 colours \checkmark and have an option of winning with either two of the same and one specific colour first \downarrow or you can have more colours but have a scenario with a 50% (or close to 50%) chance of winning. \checkmark (any answer that shows understanding of fair game play with an example)

