basic education

Department:
Basic Education REPUBLIC OF SOUTH AFRICA

NATIONAL SENIOR CERTIFICATE

GRADE 11

MARKS: 100

SYMBOL	EXPLANATION
M	Method
M/A	Method with accuracy
CA	Consistent accuracy
A	Accuracy
C	Conversion
S	Simplification
RT/RG	Reading from a table/Reading from a graph
SF	Correct substitution in a formula
O	Opinion/Example
P	Penalty, e.g. for no units, incorrect rounding off, etc.
R	Rounding off
J	Justification

NOTE:

1. If a candidate deletes a solution to a question without providing another solution, then the deleted solution must be marked.
2. If a candidate provides more than one solution to a question, then only the first solution must be marked and a line drawn through any other solutions to the question.

This memorandum consists of 8 pages.

QUESTION 1 [35 MARKS]

Ques	Solution	Explanation	Topic
1.2.2	$\begin{aligned} \text { Amount of cooking oil } & =\frac{2 \ell}{48} \checkmark \mathrm{M} \\ & =0,0416666 \ldots \ell \\ & \approx 41,67 \mathrm{~m} \ell \checkmark \mathrm{~A} \end{aligned}$ $750 \mathrm{~m}_{\ell}$ cost R12,50 $\begin{aligned} 41,67 \mathrm{~m} \ell \text { cost }= & \frac{\mathrm{R} 12,50 \times 41,67 \mathrm{~m} \ell}{750 \mathrm{~m} \ell} \quad \checkmark \mathrm{M} \\ & =\mathrm{R} 0,6945 \\ & \approx \mathrm{R} 0,69 \checkmark \mathrm{CA} \end{aligned}$ Cost of gas for 500 potatoes $=$ R259,00 $\begin{aligned} & \text { Cost of gas for } 1 \text { potato }=\frac{\mathrm{R} 259,00}{500} \\ &=\mathrm{R} 0,518 \\ & \approx \mathrm{R} 0,52 \\ & \mathrm{~A} \end{aligned}$ $\begin{aligned} \text { Overal cost of } 1 \text { twister } & =\mathrm{R} 1,29+\mathrm{R} 0,69+\mathrm{R} 0,52^{\checkmark \mathrm{M}} \\ & =\mathrm{R} 2,50 \end{aligned}$	1M dividing by 48 1A amount of cooking oil 1 M using ratio 1CA cost of cooking oil 1A cost of gas 1M adding 1CA overall cost	Fin
1.3.1	Weekly cost (in rand) $=450+2,50 \times$ number of twisters $\checkmark \checkmark \mathrm{A}$	2A correct formula	Fin
1.3.2	R1 700 $=$ R450 + R2,50 \times number of twisters R1 $250=$ R2,50 \times number of twisters $\quad \checkmark \mathrm{M}$ $\frac{\text { R1250 }}{\text { R2,50 }}=$ number of twisters $500=$ number of twisters \checkmark CA	1SF substitution 1 M subtracting 450 1CA number of twisters	Fin

QUESTION 2 [19 MARKS]			
Ques	Solution	Explanation	AS
2.1.1	$\begin{aligned} \mathrm{V}(\text { rectangular }) & =1,2 \mathrm{~m} \times 45 \mathrm{~cm} \times 8 \mathrm{~cm} \quad \checkmark \mathrm{SF} \\ & =1,2 \mathrm{~m} \times 0,45 \mathrm{~m} \times 0,08 \mathrm{~m} \checkmark \mathrm{C} \\ & =0,0432 \mathrm{~m}^{3} \quad \mathrm{CA} \end{aligned}$	1SF substitution 1 C converting to m 1CA volume	Meas
2.1.2	$\text { radius }=9 \mathrm{~cm} \quad \checkmark \mathrm{~A}$ $\begin{aligned} \mathrm{V}(\text { cylindrical }) & =3,14 \times 9 \mathrm{~cm} \times 45 \mathrm{~cm} \quad \checkmark \mathrm{SF} \\ & =3,14 \times 0,09 \mathrm{~m} \times 0,45 \mathrm{~m}^{\checkmark} \mathrm{C} \\ & =0,12717 \mathrm{~m}^{3} \checkmark \mathrm{CA} \end{aligned}$	1 A value of radius 1SF substitution 1 C converting to m 1CA volume	Meas
2.2	$\begin{aligned} \text { Cost of foam } & =\mathrm{R} 400 \times(0,0432+2 \times 0,12717) \quad \checkmark \mathrm{M} \\ & =\mathrm{R} 400 \times(0,29754) \checkmark \mathrm{S} \\ & =\mathrm{R} 119,016 \\ & \approx \mathrm{R} 119,02 \quad \checkmark \mathrm{CA} \end{aligned}$	1M multiplying total volume by R400 1S simplifying 1CA cost	Fin
2.3	$\begin{aligned} & \text { S.A. (rectangular) } \checkmark \text { SF } \\ & =2 \times(1,2 \times 0,45+0,45 \times 0,08+0,08 \times 1,2) \mathrm{m}^{2} \\ & =2 \times(0,672) \mathrm{m}^{2} \checkmark \mathrm{~S} \\ & =1,344 \mathrm{~m}^{2} \checkmark \mathrm{CA} \end{aligned}$ S.A. (cylindrical) $\begin{aligned} & \checkmark \mathrm{M} \\ & = \\ & =2 \times\left(2 \times 3,14 \times 0,09^{2}+2 \times 3, \stackrel{\checkmark}{ } \times 14 \times 0,09 \times 0,45\right) \mathrm{m}^{2} \\ & =2 \times 0,305208 \mathrm{~m}^{2} \checkmark \mathrm{~S} \\ & =0,610416 \mathrm{~m}^{2} \checkmark \mathrm{CA} \end{aligned}$ $\begin{aligned} \text { Total surface area } & =1,344 \mathrm{~m}^{2}+0,610416 \mathrm{~m}^{2} \checkmark \mathrm{M} \\ & =1,954416 \mathrm{~m}^{2} \checkmark \mathrm{~S} \\ & \approx 2 \mathrm{~m}^{2} \end{aligned}$ \therefore Rocco's calculation was correct. $\checkmark \mathrm{O}$	1SF substitution 1S simplification 1CA rectangular surface area 1M multiplying by 2 1SF substitution 1S simplification 1CA cylindrical surface area 1 M adding the surface areas 1S simplification 10 verification of statement	Meas

QUESTION 3 [25 MARKS]			
Ques	Solution	Explanation	AS
3.1	$\begin{aligned} & 15: 80 \checkmark \text { RT } \\ & =3: 16 \checkmark \mathrm{CA} \end{aligned}$	1RT reading from the table 1CA ratio in simplest form	Data
3.2		1 M subtracting from 1150 1RT reading from the table 1CA value of A 1RG reading from the graph 1CA value of B	Data
3.3	$\begin{aligned} \text { Number of females } & =1150-943 \\ & =207 \checkmark \mathrm{~A} \end{aligned}$ $\begin{aligned} \text { Number of white females } & =8,26 \% \text { of } 207 \checkmark \mathrm{M} \\ & =17,0982 \\ & \approx 17 \checkmark \mathrm{CA} \end{aligned}$ $\begin{aligned} \mathrm{P}(\text { white female }) & =\frac{17 \checkmark \mathrm{CA}}{1150} \checkmark \mathrm{~A} \\ & =0,01478 \ldots . \end{aligned}$	1A number of females 1M using percentage white females 1CA number of white females 1CA numerator 1A denominator	Data
3.4.1	$\begin{aligned} \text { Mean } & =\frac{943}{12} \checkmark \mathrm{M} \\ & =78,58 \\ & \approx 79 \checkmark \mathrm{~A} \\ & \approx \mathrm{CA} \end{aligned}$	1M sum of all scores 1A number of scores 1CA mean	Data
3.4.2	Mode $=15 \checkmark \checkmark$ CA	2A correct mode (depends on value of A)	Data
3.4.3	The order is $52 ; 60 ; 63 ; 71 ; 76 ; 79 ; 80 ; 80 ; 82 ; 85 ; 96 ; 119$ $\begin{aligned} \text { Median } & =\frac{79+80}{2} \checkmark \mathrm{M} \\ & =79,5 \\ & \approx 80 \quad \checkmark \mathrm{CA} \end{aligned}$	1 A arranging in ascending order 1M finding median 1CA median	Data
3.4.4	$\begin{aligned} \text { Range } & =25-13 \\ & =12 \checkmark \mathrm{~A} \end{aligned}$	1 M finding range 1A range	Data

\(\left.$$
\begin{array}{|l|l|l|l|}\hline \text { Ques } & \text { Solution } & \text { Explanation } & \text { AS } \\
\hline 3.5 & \begin{array}{l}\text { Each of the values gives a fair representation of the data values } \\
\text { as they are all equal to } 80 \checkmark \checkmark \checkmark \mathrm{CA}\end{array} & \begin{array}{l}\text { 3CA correct } \\
\text { description }\end{array}
$$ \& Data

\hline \& \& \& (3)\end{array}\right]\)| |
| :--- |

QUESTION 4 [21 MARKS]			
Ques	Solution	Explanation	AS
4.1.1	$\begin{aligned} & \text { Length }=3,45 \mathrm{~cm} \checkmark \mathrm{~A} \\ & \text { Breadth }=3,45 \mathrm{~cm} \checkmark \mathrm{~A} \\ & \text { Scale is } 3,45 \mathrm{~cm}: 3,45 \mathrm{~m} \checkmark \mathrm{M} \\ & 3,45 \mathrm{~cm}: 345 \mathrm{~cm} \checkmark \mathrm{C} \\ & 1: 100 \checkmark \mathrm{CA} \end{aligned}$	1A correct measurement 1A correct measurement 1 M writing as a ratio 1 C converting to cm 1CA simplified ratio	Plans
4.1.2	1 (one) ${ }^{\checkmark \checkmark \mathrm{A}}$	2A correct number of windows	Plans
4.2.1	$\stackrel{\checkmark}{\mathrm{A}} \underset{\mathrm{C}}{\checkmark}$ A A one window and one door	1A correct elevation 1A window 1A door	Plans
4.2.2	\checkmark A $\quad \checkmark$ A Lounge and Bedroom 1	1A lounge 1A bedroom 1	Plans
4.3.1		1A result BBG 1A result GBB 1A result GGG	Prob
4.3.2	$\begin{aligned} & \mathrm{P}(\text { at least two girls })=\frac{4}{8} \checkmark \mathrm{~A} \\ &=\frac{1}{2} \checkmark \mathrm{~A} \\ & \checkmark \mathrm{~S} \end{aligned}$	1A numerator 1A denominator 1S simplify	Prob
4.3.3	$\checkmark \mathrm{A} \quad \checkmark \mathrm{~A} \quad \checkmark \mathrm{~A}$ BBG; BGB; GBB	1A BBG 1A BGB 1A GBB (3)	Prob

