TIME	2 ½ HOURS	PAPER II	MARKS: 150
1.1.1	В		
1.1.2	С		
1.1.3	А		
1.1.4	С		
1.1.5	В		
1.1.6	D		
1.1.7	D		
1.1.8	D		
1.1.9	В		
	C (√√)		/20/
1.1.10	C (V V)		1201
1.2.1	Resource partitioning		
1.2.2	DNA polymerase		
1.2.3	Eutrophication		
1.2.4	Meissner's corpuscle		
1.2.5	Oxytocin		
1.2.6	Ecological Niche		
1.2.7	Hypothalamus		
1.2.8	Unstable population		
1.2.9	Eusocial		
1.2.10	Exotic species/alien species	(*)	/10/
	-		

© e-classroom

1.4.4

- 1.3.1 А
- 1.3.2 None
- 1.3.3 А
- 1.3.4 None
- B (✓✓) 1.3.5
- 1.4.1 ANY ONE:
 - Low birth rate/Low population growth (✓)
 - \downarrow Low death rates (\checkmark)
 - ↓ Longer life expectancy (✓)
- 2 million + 2 million (\checkmark) = 4 million (\checkmark) 1.4.2

1.4.3 TABLE SHOWING THE VISIBLE DIFFERENCES BETWEEN POPULATION GRAPHS A AND B Г

	PYRAMID A	PYRAMID B			
	 Iower numbers in the 0-4 range Higher numbers in the 80+ range People live to older ages Larger number of people in 20- 29 range 	 Higher number in the 0-4 range Lower numbers in the 80+ range People live to younger ages Lower number of people in 20– 29 range 			
	Lower birth rate	Higher birth rate	1		
	Any logical info in pyramid	Any logical info in pyramid			
	Table (✓) Info (✓✓✓✓)				
↓ Improved education (✓)					
🜲 Better medical facilities 🗸					
🜲 Improved medicine 🗸					
	🜲 Improved housing (🗸)				
	🜲 Better sanitation (🗸)				
	🜲 Any logical answer (🗸)		(2)		

/10/

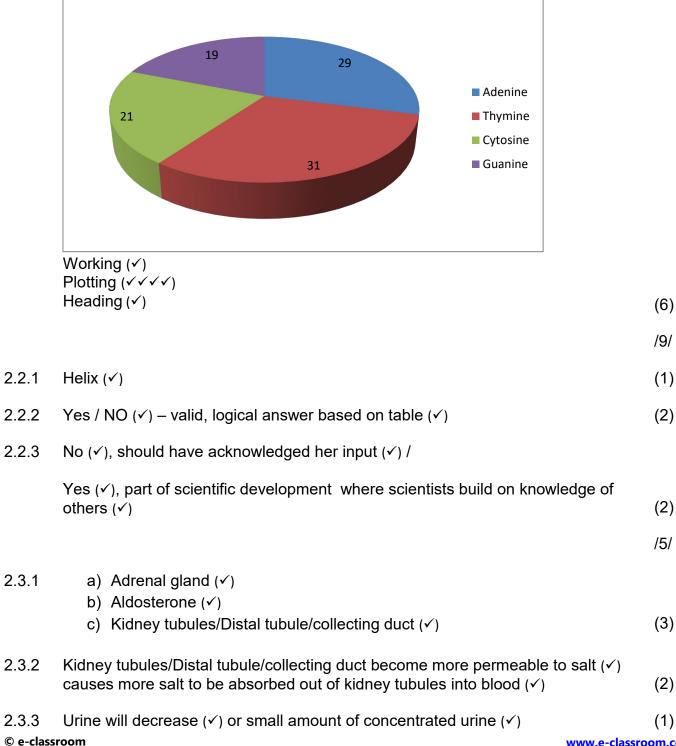
[50]

(2)

(1)

/10/

2.1.1 Improves reliability/accuracy () (1)


2.1.2 90:90 or 30:30 or 1:1 (1)

2.1.4

2.1.3 Adenine and thymine are complementary base pairs (\checkmark) or

> They always exist in the same relative percentages or ratios as they are complementary (\checkmark)

> > Nucleotides in DNA

www.e-classroom.co.za

(1)

(1)

E-Classroom

		/6/
		[20]
3.1.1	No title (✓)	(1)
3.1.2	An increase in the level of chlorine (\checkmark) leads to a decrease in the ozone concentration \checkmark	(2)
3.1.3	Time (✓) (accept 'year')	(1)
3.1.4	Chlorofluorocarbons/ CFCs (✓)	(1)
3.1.5	CFCs might persist for a long time in the atmosphere (\checkmark) Other countries might have taken longer to implement the protocol (\checkmark) Households were still using the existing items with CFCs in them (\checkmark)	(2)
3.1.6	There would be increased (skin) cancers/sun burn/sun stroke (\checkmark) because decreased ozone levels (\checkmark) result in increased UV rays (\checkmark) reaching the earth.	(2) /9/
3.2.1	59 million tons × 10% = 5,9 million tons (\checkmark)	
	59 million – 5,9 = 53,1 million tons (\checkmark)	(2)
3.2.2	1% + 13% + 4% + 6% + 8% ()) = 32% ())	(2)
3.2.3	Generate organic manure for farming (✓)	
	♣ Generate cheaper cooking gas (✓) (methane) for domestic purposes.	(1)
3.2.4	Disease carrying animals/organisms use these sites as their homes (\checkmark) because of a ready supply of food.	
	Dump sites release unpleasant smell causing air pollution (\checkmark).	
	Decomposition of pollutants may release toxic (\checkmark) substances into the air and water causing health problems (\checkmark)/may cause fires (\checkmark).	(2)
		7
3.3.1	A (✓)	(1)
3.3.2	 Moose population numbers are higher wolf population (✓)/Prey peaks before predator Wolf population increases and not long after Moose population increase (✓) 	

Wolf population decreases and not long after Moose population

Grade 11 Life sciences November paper 2 Memorandum

	 ↓ decreases (✓)/As wolf numbers decrease, moose numbers increase (✓) ↓ Wolf population always lags behind moose population (✓) ↓ When the moose numbers change the wold numbers change (✓) ↓ Any ONE logical answer 	(1)
3.3.3	After a slight delay the wolf population will also increase (\checkmark) as there is more food available (\checkmark) so numbers can increase as they become physically fitter	(2)
4.1.1	Protein synthesis (✓)	/4/ [20] (1)
4.1.2	a) Transcription (\checkmark) – mRNA being written from a section of DNA (gene) (\checkmark)	(2)
	b) Translation (\checkmark) – tRNA anticodons are "meeting" with mRNA codons (\checkmark)	(2)
	c) Translation (✓) – tRNA molecule leaves amino acid behind (✓), joined to another amino acid by a peptide bond (✓) and goes to pick up the same amino acid in the cytoplasm (✓)	(2)
		/7/
4.2.1	6 – GGA (✓)	
	8 – ACC (✓)	
	10 – GTG (✓)	(3)
4.2.2	a) Peptide bond (✓)	(1)
	b) Ribosome (✓)	(1)
4.2.3	7 – GAA – Leu (✓✓)	
	9 – CCU – Gly (✓✓)	(4)
4.3.1	Interspecific Competition/competitive exclusion (\checkmark) – Two different species fighting for one resource (\checkmark)	(2)
4.3.2	If species A is exposed to a relative humidity above 25% they will die (\checkmark) or	
	If species b is exposed to a relative humidity below 60 % they will all die (\checkmark) or	
	They can say if exposed to exact humidity they survive (\checkmark)	(2)
4.3.3	Relative humidity (✓)	(1)
4.3.4	 Amount of flour Type of flour Species of beetle Size of the beetle Size of the iar 	

Size of the jar
 Type of jar

-Classroom

Grade 11 Life sciences November paper 2 Memorandum

Amount of water available 4 Any TWO logical answer not already mentioned (\checkmark) (2) Increases the reliability/accuracy of the study (\checkmark) Or 4.3.5 Too see if males and females react differently to the conditions (\checkmark) (1) 4.3.6 Species B (\checkmark) (1)4.3.7 Both would die (\checkmark) – neither beetle would be able to adapt to the decrease in humidity (\checkmark) nor would are able to survive in such low relative humidity and would (2) die (√). /11/ [25] 5.1.1 A – Endotherm (\checkmark); B – Ectotherm (\checkmark) (2) 5.1.2 Any TWO: Radiation – Lying directly in sun gaining heat via radiation (\checkmark) Convection – Lying in the wind (losing or gaining heat from wind) (\checkmark) (2)Conduction – Lying against a hot/cold object (gaining or losing heat from touch) (\checkmark) Increased body temperature picked up by hypothalamus/ruffini (5.1.3 4 Messages end to medulla oblongata causing effectors to respond (\checkmark) ↓ Increased activity in sweat glands (\checkmark) → producing more sweat (\checkmark) → sweat evaporated from body cooling body down (\checkmark) ↓ Vasodliation to the skin (\checkmark) → more blood carried to skin (\checkmark) → increased

heat loss via radiation (✓)
♣ Blood temperature lowered (✓)

(6)

-Classroo

/10/

5.2

- When the level of carbon dioxide in the body rises above normal levels:
- \clubsuit The level of bicarbonate ions in the blood/plasma rises (\checkmark)
- ♣ Blood becomes more acidic/pH of blood drops (✓)
- ♣ This is picked by receptor cells (✓)
- \downarrow In the medulla oblongata (\checkmark)
- and carotid artery/aorta 🗸
- ♣ Sends impulses(✓)
- 🜲 To diaphragm (🗸)
- ♣ And Intercostal muscles (✓)
- To cause faster deeper breathing(
- Increased heart rate (</
- Increased blood flow to lungs (✓)
- ♣ More carbon dioxide is breathed out/ excreted (✓)
- \clubsuit Carbon dioxide levels in blood return to normal (\checkmark)

/5/

- 6. Genetic Modification: A plasmid extracted from its bacteria (\checkmark) Restriction enzymes (\checkmark) are used to remove a segment of the plasmid DNA (\checkmark). A healthy pancreas cell (\checkmark) is removed from a non-diabetic person (\checkmark) The insulin secreting gene isolated (\checkmark) and removed (\checkmark) using restriction enzymes (\checkmark) The insulin secreting gene in inserted into the plasmid (\checkmark) attaching the stick ends (\checkmark) using ligase (\checkmark) Plasmid inserted back into bacteria (\checkmark) Bacteria placed into incubator (\checkmark) and grown until liquid insulin (\checkmark) is produced (8) Glucose levels increase above normal: Glucose levels in blood increase (Insulin injected into body (✓) \downarrow Insulin causes an increased uptake of glucose by cells for energy (\checkmark) (respiration) 4 Insulin converts glucose into glycogen (\checkmark) and stores it in the liver (\checkmark) \blacksquare Glucose converted into fat (\checkmark) (4) Glucose levels drop below normal Glucose levels drop after period of no food (
 - **4** Pancreas (\checkmark) secretes glucagon (\checkmark) from alpha cells of islets of langerhans
 - ← Glucagon converts glycogen (\checkmark) in the liver (\checkmark) into glucose in the blood (\checkmark)
 - ♣ Glucose levels return to normal (✓)
 - **4** Negative feedback stops the glucose increasing process in the body (\checkmark) (5)

/17/

/3/

[20]