

1.1.1. 1.1.2. 1.1.3. 1.1.4. 1.1.5. 1.1.6. 1.1.7. 1.1.8. 1.1.9. 1.1.10.	D ✓ ✓ B B A D C B D B D	
1.2.1. 1.2.2. 1.2.3. 1.2.4. 1.2.5. 1.2.6.	Chloroplast/chlorophyll/stroma✓ micelle✓ enzymes✓ appendix✓ aorexia✓ or bulemia✓ or malnourished✓ cortex✓	(6)
1.3.1. 1.3.2. 1.3.3. 1.3.4.	B only√√ A only√√ B only√√ A only√√	(8)
1.4.1. 1.4.2. 1.4.3. 1.4.4.	10kg✓ Elephant✓ 1 kg✓ Animals with a lower✓ mass✓ will have a higher metabolic rate✓/vice versa	(1) (1) (1) (3)
1.5.1.	1- oesophagus√ 2-stomach√ 3-pyloric sphincter√ 6-gall bladder√ 7-liver√	(5)
1.5.2. 1.5.3.	Sores bile✓ ANY FOUR: Forms ammonia✓ Makes plasma proteins✓ makes vit A✓	(1)
	Converts glucose into glycogen ✓ and back ✓ Stores fat soluble vitamins ✓ Breaks down steroids ✓	(4)

Grade 11 Life sciences November paper 1 Memorandum

-Classroot

E-Classroom

	c. Podocytes ✓ assist in filtration ✓ afferent is wider than efferent ✓ for pressure difference ✓ squamous epithelium ✓ thin walled for diffusion ✓ Slit pores ✓ to allow substances through ✓ TWO POINTS MAX	(4)
2.1.6.	Receptor cells in the afferent arteriole detect change $\checkmark \rightarrow$ Adrenal gland is stimulated $\checkmark \rightarrow$ To stop secreting aldosterone $\checkmark \rightarrow$ This decreases re-absorption of sodium from the renal tubules into the surrounding blood vessels $\checkmark \rightarrow$ Salt levels decrease $\checkmark \rightarrow$	
	Returns to normal ✓ FOUR MAX	(4)
2.1.7.	Raise sample numbers✓ repeat✓	(2)
2.1.8.	Any controlled/fixed variable✓ TWO Same amount of water✓ Same conditions✓ Same temperature✓ Same way of measuring✓	(2)
2.2.1.	As light intensity \checkmark increases \checkmark , photosynthesis increases \checkmark	(3)
2.2.2.	The plant is exposed to more light and more carbon dioxide \checkmark	(1)
2.2.3.	water√/enzymes√/chlorophyll√/temperature√	(2)
2.2.4.	Decide on the plants✓ Decide on the number of plants✓ Learn to use the equipment✓ Gather the carbon dioxide tank✓ ANY THREE PLANNING STEPS	(3)
3.1.1.	1- red blood cell✓	
	3-capilary√	(2)
3.1.2.	Dissolves gases in for easy diffusion \checkmark	(1)
3.1.3.	thin✓ moist✓ large✓ wel ventilated✓ well protected✓ ANY FOUR	(4)
314	• 7% Dissolves in water (plasma) \checkmark in the blood plasma to form carbonic acid	

Grade 11 Life sciences November paper 1 Memorandum

	 30% Combines with haemoglobin ✓ to form carbaminohaemoglobin in the RBC's √ 		
	 63% forms Bicarbonate ions (HCO₃⁻) ✓ in the RBC's when it combines with 		
	water to form carbonic acid	h then dissociates to form bicarbonate	(6)
3.1.5.	 Between the body cells ✓ and capillaries ✓ 		(2)
3.2.1.	A- pharynx✓ B-epiglottis✓ C-larynx✓ D-trachea✓ E-bronchi✓		(5)
3.2.2.	ribs√ and intercostal muscles√/pleural membrane√		(2)
0 0 0			
3.2.3. 2.2.2	Prvides sound	Evairation	(1)
3.2.3	Pibs move up and outs	Pibs move down and inv	
	Pressure decreases	Pressure increases	
	Diaphragm contracts and moves down	Diaphragm moves up and relayes	
		Air rushes out	
			(7)
	✓ for table		()
3.3.1.	Across the inner cel membrane \checkmark of the mitochondrion \checkmark		(2)
3.3.2.	phosphorylation ✓		(1)
3.3.3.	sweat✓		(1)
3.4.	Moist ✓ as its in water ✓ large ✓ as there are many lamellae ✓ well protected ✓ in the operculum ✓ well ventilated ✓ from the movement ✓ Thin as only one cell thick ✓ SIX POINTS MAX		(6)
4.	Absorption: ✓(a)		

- Protein is in the form of amino acids ✓ which will move through the villi wall ✓ into the capillary ✓
- Glucose ✓ will move through the wall in the same way ✓ (NOTE only one mark here if the same is repeated)
- fats ✓ will break into gycerol ✓ which will move through on its own into the lacteal ✓ and fatty acids ✓ which will combine with the bile salst ✓ to form a micelle ✓ which will move in to the lacteal ✓.

(6 max)

-Classroo

E-Classroom

Glycolysis√ (g)

• glucose ✓ is broken into 2 3 carbon molecules ✓ of pyruvate ✓ producing 4 ATP and using 2 ATP ✓ which results in a nett gain of 2 ATP ✓

(3 max)

Krebs cycle√(k)

- Pyruvate enters a mitochondrion through the membrane ✓
- Pyruvate gets broken down√
- Releasing High Energy Hydrogen atoms ✓ and Carbon Dioxide✓

(3 max)

Ox Phos and ETC: \checkmark (o)

- NADH becomes NAD✓ and releases an energised hydrogen✓ into the transport protein.
- This hydrogen then transfers its energy ✓ (*in the form of an electron*) into the electron transport chain. ✓
- The hydrogens collect in the intermembrane space ✓, as they are pumped through every complex. ✓
- THE ENERGY: The energy (*from the electrons*) is passed through the THREE protein complexes ✓, and finally used to be given to oxygen ✓ (the last electron acceptor) which then binds with two hydrogen ions in ✓ order to create water. ✓
- THE HYDROGEN IONS: The hydrogens then move passively back ✓ into the mitochondrial matrix through the ATP pump (ATP synthase). ✓ This creates energy ✓ (through the movement of the Hydrogen ions) which powers the joining of the ADP and the P ✓ into an ATP molecule

(5max)