basic education

Department:
Basic Education REPUBLIC OF SOUTH AFRICA

NATIONAL SENIOR CERTIFICATE

GRADE 10

LIFE SCIENCES P1

EXEMPLAR 2012

MEMORANDUM

MARKS: 150

This memorandum consists of 8 pages.

PRINCIPLES RELATED TO MARKING LIFE SCIENCES 2012

1. If more information than marks allocated is given

Stop marking when maximum marks is reached and put a wavy line and 'max' in the right-hand margin.
2. If, for example, three reasons are required and five are given

Mark the first three irrespective of whether all or some are correct/incorrect.
3. If whole process is given when only part of it is required

Read all and credit relevant part.
4. If comparisons are asked for and descriptions are given

Accept if differences/similarities are clear.
5. If tabulation is required but paragraphs are given

Candidates will lose marks for not tabulating.
6. If diagrams are given with annotations when descriptions are required Candidates will lose marks.
7. If flow charts are given instead of descriptions

Candidates will lose marks.
8. If sequence is muddled and links do not make sense

Where sequence and links are correct, credit. Where sequence and links are incorrect, do not credit. If sequence and links becomes correct again, resume credit.
9. Non-recognised abbreviations

Accept if first defined in answer. If not defined, do not credit the unrecognised abbreviation but credit the rest of answer if correct.
10. Wrong numbering

If answer fits into the correct sequence of questions but the wrong number is given, it is acceptable.
11. If language used changes the intended meaning

Do not accept.
12. Spelling errors

If recognisable accept provided it does not mean something else in Life Sciences or if it is out of context.
13. If common names given in terminology

Accept, provided it was accepted at the National memo discussion meeting.
14. If only letter is asked for and only name is given (and vice versa)

No credit.
15. If units are not given in measurements

Candidates will lose marks. Memorandum will allocate marks for units separately.
16. Be sensitive to the sense of answer, which may be stated in a different way.
17. Caption

All illustrations (diagrams, graphs, tables, et cetera) must have a caption.

SECTION A

QUESTION 1

1.1	1.1.1	A $\checkmark \checkmark$
	1.1.2	A $\checkmark \checkmark$
	1.1.3	B $\checkmark \checkmark$
	1.1.4	C $\checkmark \checkmark$
	1.1.5	B $\checkmark \checkmark$
	1.1.6	C $\checkmark \checkmark$
	1.1.7	C $\checkmark \checkmark$
	1.1.8	D $\checkmark \checkmark$
	1.1.9	D $\checkmark \checkmark$

1.2 1.2.1 Chlorophyll \checkmark
1.2.2 Diffusion \checkmark
1.2.3 Cancer \checkmark
1.2.4 Parenchyma \checkmark
1.2.5 Substrate \checkmark
1.2.6 $12 \checkmark$
1.2.7 Stomata \checkmark
1.2.8 Neuron \checkmark
1.3 1.3.1 A only $\checkmark \checkmark / A$
1.3.2 A only $\checkmark \checkmark / A$
1.3.3 B only $\checkmark \checkmark / B$
1.3.4 Both A and $B \checkmark / A$ and $B /$ Both
1.3.5 A only $\checkmark \checkmark$
1.3.6 B only $\checkmark \checkmark / B$
1.3.7 B only $\checkmark \checkmark / B$
1.3.8 None $\checkmark \checkmark$
1.3.9 B only $\checkmark \checkmark / B$
1.4 1.4.1 Secretion \checkmark
1.4.2 Animal \checkmark
1.4.3 Mitochondrion \checkmark
1.4.4 Both \checkmark
1.4.5 Photosynthesis \checkmark
1.4.6 Plant \checkmark

SECTION B

QUESTION 2

2.1
 2.1.1 $Y \checkmark$

2.1.2 Large vacuole \checkmark

Have chloroplasts \checkmark
Presence of a cell wall \checkmark
(Mark first TWO only)
Any 2
$\begin{array}{ll}\text { 2.1.3 } & \text { A - mitochondrion } \\ & B-\text { endoplasmic reticulum }\end{array}$
$\begin{array}{ll}\text { 2.1.4 } & \text { Stores water, organic and inorganic substances. } \checkmark \\ & \text { Ensure turgor pressure to support young plant cells. } \checkmark \\ & \text { The high concentration of solutes in the vacuole increases the } \\ & \text { uptake of water by osmosis. } \checkmark\end{array}$
(Mark first THREE only)
(Any 3)
2.1.5 Cellulose \checkmark
2.2 2.2.1 A - Centromere \checkmark

B - Chromatid \checkmark
D - Nucleolus \checkmark
E - Centriole \checkmark
2.2.2 $4 \checkmark \rightarrow 1 \checkmark \rightarrow 5 \checkmark \rightarrow 2 \checkmark \rightarrow 3 \checkmark$
2.2.3 $4 \checkmark$
2.2.4 In animal cells the cytoplasmic membrane constricts/pinches off \checkmark in the middle
In plant cells new cytomembranes or cell plate and a cross-wall \checkmark are laid down
$\begin{array}{ll}\text { 2.2.5 } & \text { Growth } \checkmark \\ & \text { Repair } \checkmark \text { of worn or damaged tissues } \\ & \text { Reproduction } \checkmark \\ & \text { (Mark first TWO only) }\end{array}$
Any 2
2.3 2.3.1 A membrane allowing certain substances \checkmark to move through and not others.
2.3.2 The cell shrinks \checkmark because of the water moving out $\checkmark /$ exosmosis
The water potential in the cell is higher \checkmark than the water potential outside \checkmark the cell.
2.3.3 (Ex)osmosis/Plasmolysis \checkmark
$2.4 \quad$ 2.4.1 - an excess of cholesterol would accumulate in blood vessels \checkmark

- thus clogging them $\checkmark /$ causing heart defects
(Mark first ONE only)
2.4.2 $\begin{aligned} & \frac{100 \times 5500}{2000} \checkmark \\ & =275 \checkmark \mathrm{~g} / 0,275 \checkmark \mathrm{~kg} \checkmark\end{aligned}$
2.4.3

Proportion of nutrients in cereal

\square carbohydrates \square dietary fibre ■ fats \mathbb{Z} protein

Correct type of graph	1
Correct proportions for each labelled slice	4
Title	1

QUESTION 3

3.1 Together with muscles it plays an important role in locomotion \checkmark / movement.
It protects \checkmark the delicate or sensitive parts of the body. Mineral salts are stored \checkmark in it. It gives the body strength and shape $/ \checkmark$ support.
Three smallest bones in the middle ear for hearing. \checkmark
(Mark first FOUR only)
Any 4
3.2 3.2.1 B - Ligament \checkmark

C-Radius \checkmark
D - Ulna \checkmark
3.2.2 Hinge \checkmark joint
3.2.3 (a) - Inner lining secretes synovial fluid \checkmark

- Prevents synovial fluid from leaking out \checkmark
- Prevents germs from entering \checkmark
(Mark first TWO only)
Any 2
(b) The ligament hold the two bones together \checkmark
(Mark first ONE only)
Any 1
3.2.4 Tendon \checkmark of biceps muscle
3.2.5

Mark allocation

Caption \checkmark
Epiphysis and diaphysis shown and labelled \checkmark
Proportions of epiphysis and diaphysis \checkmark
Any THREE other labels $\checkmark \checkmark \checkmark$
3.3 3.3.1 The higher/lower the light intensity \checkmark the higher/lower \checkmark the rate of water loss. \checkmark

OR

No \checkmark relationship between the light intensity \checkmark and the rate of water loss. \checkmark
3.3.2 Water loss \checkmark
3.3.3 Beyond this value \checkmark no further increase in water loss \checkmark

OR

largest \checkmark water loss \checkmark at this light intensity.
3.3.4 Prevents water evaporation \checkmark from the surface.
3.3.5 Allows sufficient time \checkmark for the plant to adjust \checkmark to new light intensities.
3.3.6 Slower rate of water loss \checkmark
3.3.7 Decrease \checkmark in evaporation rate \checkmark
3.3.8 Repeat \checkmark the investigation several times at each light intensity use the average \checkmark
3.4 3.4.1 $\quad \mathrm{W}$ - lodine solution \checkmark
X - Fehling A \& $B \checkmark /$ Benedict's solution
Y - Millon's \checkmark reagent
3.4.2 1 - Starch \checkmark

2 - Glucose \checkmark
3 - Protein \checkmark
3.4.3 (a) Brown \checkmark colour
(b) Blue \checkmark colour

SECTION C

QUESTION 4

Absorption of water and lateral movement to the xylem

- Water potential \checkmark of the soil higher \checkmark
- than that of the cell sap \checkmark of the root hair.
- Water moves from soil solution by process of osmosis \checkmark
- through permeable cell wall, \checkmark
- differentially cell membrane \checkmark and cytoplasm \checkmark
- \quad through the tonoplast into the vacuole \checkmark of root hair.
- Water potential of root hair increases \checkmark and is higher
- than that of the adjacent cortical cells. \downarrow
- Water diffuses along water potential gradient \checkmark
- \quad via intercellular air spaces and cell walls or cell membranes \checkmark of the cortical cells or
- \quad via plasmodesmata \checkmark through from cell to cell
- across the cortex \checkmark
- through the Casparian bands \checkmark of the endodermis \checkmark into the xylem. Any 11

Structural suitability of xylem

Xylem vessels:

- Are elongated/end to end \checkmark to allow transport of water to great heights \checkmark
- Are non-living \checkmark to facilitate rapid movement of water \checkmark
- Have large lumens \checkmark to allow for unrestricted flow of water \checkmark
- Cross walls absent \checkmark /to allow easy passage of water \checkmark
- \quad The walls of the xylem elements are thickened \checkmark /contain lignin
- to withstand tension of cohesion and adhesion $\checkmark /$ the strong forces that cause the water to rise/prevent collapsing

Any 3×2
Content

ASSESSING THE PRESENTATION OF THE ESSAY

Marks	Description
3	Well structured - demonstrates insight and understanding of question
2	Minor gaps or irrelevant information in the logic and flow of the answer
1	Significant gaps or irrelevant information in the logic and flow of the answer
0	Not attempted/nothing written other than the question number/no relevant information

Synthesis

