Memo

1.1 distance - d
1.2 time - t
1.3

1.4 To get a straight line
1.5 a $=2 \times$ slope of s vs t^{2} graph

$$
\begin{align*}
& =2 \times(1.06-0) /(10.6-0.6) \checkmark \checkmark \\
& =0.21 \mathrm{~m} . \mathrm{s}^{-2} \quad \checkmark \tag{4}
\end{align*}
$$

1.6 a possible answer:

- use a ticker timer for constant time intervals
- measure distances over a large no of intervals with a ruler \checkmark
- calculate v at two places on the tape \checkmark
- calculate the acceleration from the change in velocity \checkmark
$\begin{aligned} & 2.1 \quad v^{2}=u^{2}+2 \text { as } \\ & 0=25^{2}+2(-10) s ~ \\ & \mathrm{~s}=31.25 \mathrm{~m} \checkmark\end{aligned}$
$2.2 \quad v=u+a t$
$0=25-10 t \checkmark$
$\mathrm{t}=2.5 \mathrm{~s} \checkmark$
2.3 up: \checkmark down:

- while moving up, the acceleration will be greater than that without air resistance \checkmark
- while moving down, the acceleration will be less than that without air resistance \checkmark
2.4 If the cricketer causes the momentum of the ball to change of a longer period of time \checkmark, the resultant force experienced by the hand will be less.
3.1 Vertical height, h , is used to calculate the potential energy at the top \checkmark

After the collision, PE top equals KE at bottom \checkmark
Velocity can be calculated from KE \checkmark
3.2 In an isolated system, the total momentum is constant
$3.3 \quad \begin{aligned} \mathrm{p}_{\text {after }} & =\mathrm{mv} \\ & =(0.5)(0.48) \checkmark \\ & =0.24 \mathrm{~kg} \cdot \mathrm{~m} \cdot \mathrm{~s}^{-1}\end{aligned}$
$3.4 \quad p_{\text {before }}=p_{\text {after }} \checkmark$

$$
\begin{array}{cl}
0.002 v+0 & =0.24 \checkmark \\
v & =120 \mathrm{~m} \cdot \mathrm{~s}^{-1} \checkmark \tag{3}
\end{array}
$$

$3.5 \mathrm{KE}_{\text {before }}=1 / 2 \mathrm{mv}^{2}$

$$
=1 / 2(0.002)(120)^{2}
$$

$$
=14.4 \mathrm{JV}
$$

$K E_{\text {after }}=1 / 2 m v^{2}$

$$
=1 / 2(0.50)(0.48)^{2}
$$

$$
\begin{equation*}
=0.06 \mathrm{~J} \checkmark \tag{3}
\end{equation*}
$$

Inelastic as $\mathrm{KE}_{\text {before }} \neq \mathrm{KE}_{\text {after }} \checkmark$
3.6 They are dangerous as 14.4 J is much larger than 2 J and so can easily puncture skin. (could also mention eyes etc.)
4.1 $\quad \mathrm{PE}=\mathrm{mgh}$

$$
\begin{align*}
& =(0.056)(10)(16) \checkmark \\
& =8.96 \mathrm{~J} \checkmark \tag{2}
\end{align*}
$$

$4.2 \quad 18 \mathrm{~m} . \mathrm{s}^{-1}$
4.3 Total KE $=8.96 \checkmark+1 / 2(0.056)(18)^{2} \checkmark$

$$
\begin{align*}
& =8.96+9.07 \\
& =18.03 \mathrm{~J} \checkmark \tag{3}
\end{align*}
$$

4.4 $\mathrm{KE}=1 / 2 \mathrm{mv}^{2}$

$$
\begin{align*}
& 18,03=1 / 2(0.056) \mathrm{v}^{2} \\
& \mathrm{v} \tag{2}\\
& \quad=25.4 \mathrm{~m} \cdot \mathrm{~s}^{-1} \checkmark
\end{align*}
$$

4.5

$4.6 \cos \theta=18 / 25.4 \checkmark$

$$
\begin{equation*}
\theta=44.9^{\circ} \checkmark \tag{2}
\end{equation*}
$$

4.7 no air resistance: $K E=18.03 \mathrm{~J}$
with air resistance KE $=1 / 2(0.056)(22)^{2}=13.55 \mathrm{~J} \checkmark$
work done against air resistance $=18.03-13.55=4.48 \mathrm{~J} \checkmark$
$\begin{aligned} 5.1 \quad c & =f \lambda \\ 3 \times 10^{8} & =6.5 \times 10^{14} \lambda \checkmark \\ \lambda & =462 \mathrm{~nm} \checkmark\end{aligned}$
colour is indigo or blue \checkmark
5.2.1 green \checkmark, as all colours reflected by white, but green was the only incident colour \checkmark
5.2.2 black \checkmark, blue writing cannot reflect green and so writing appears black (no cololur)
5.3 magenta
5.4.1

- atmosphere uses up UV to form $\mathrm{O}_{2} \checkmark$
- atmosphere uses up UV to break O_{3} into $\mathrm{O}_{2} \checkmark$
- atmosphere therefore blocks 98% of harmful rays \checkmark
5.4.2 more UV light will pass through the atmosphere \checkmark (NOT global warming)
6.1.1 Iongitudinal wave

6.1 .3 i 0 cm
6.1.3ii $[(-2.6)+(1.7)] \times 10^{-4} \mathrm{~cm} \checkmark$

$$
\begin{equation*}
=-0.9 \times 10^{-4} \mathrm{~cm} \checkmark \tag{3}
\end{equation*}
$$

6.2.1 on answer sheet
6.2.2 alternating bright and dark lines
6.2.3 alternating bright and dark lines, but closer together
$6.2 .4 \pm 500 \mathrm{~nm}$
7.1 D
(2)

7.2 downwards in plane of paper

7.3 magnetic field from magnet interacts \checkmark with magnetic field from current where the fields interact, they produce an area of high density \checkmark wire moves to reduce the high density of field lines
8.1

- Force on current carrying wire in magnetic field
- Force on DA and BC in opposite directions \checkmark
- Coil experiences a turning force \checkmark
- Commutator ensures coil keeps turning in the same direction \checkmark
8.2 Vertical \checkmark
as no current or forces through axis of rotation \checkmark
8.3 electrical energy $\checkmark \rightarrow$ mechanical energy \checkmark
8.4
- Friction in bearings (mechanical \rightarrow heat)
- Heating in wire (electrical \rightarrow heat)
9.1 emf induced is directly proportional to the rate of change of flux linkage
$9.2 \mathrm{emf}=-\mathrm{N} \Delta \Phi / \Delta \mathrm{t}$
$=240 \times\left(2.5 \times 10^{-4}\right)($ change in $B \checkmark /$ change in $t) \checkmark$
$=0.014 \mathrm{~V} \checkmark$
9.3 answer sheet
9.4
- more turns
- stronger magnet
- faster swinging of magnet
- bigger area of coil
(any three)
10.1 B
10.2 use slip rings
10.3 answer sheet
10.4
- changing current in primary coil causes a changing magnetic field \checkmark
- this changing B field through the secondary coil causes an induced emf in secondary coil
- no of coils in secondary must be less \checkmark to have smaller flux linkage in secondary coil \checkmark
$10.5 \mathrm{i} \frac{\mathbf{N}_{\mathrm{p}}}{\mathbf{N}_{\mathrm{s}}}=\frac{\mathbf{V}_{\mathrm{p}}}{\mathrm{V}_{\mathrm{s}}}$
$\frac{15}{1}=\frac{230}{\mathrm{~V}_{\mathrm{s}}} \checkmark \checkmark \quad \mathrm{V}_{\mathrm{s}}=15.3 \mathrm{~V} \checkmark$
10.5ii not all flux from primary enters secondary coil \checkmark

Heating in wires \checkmark
$11.1 \Delta \mathrm{E}=-4.026-(-5.990)$

$$
=1.964 \mathrm{eV} \checkmark
$$

$\begin{aligned} \Delta \mathrm{E} & =(1.964)\left(1.6 \times 10^{-19}\right) \\ & =3.142 \times 10^{-19} \mathrm{~J} \checkmark\end{aligned}$
$\Delta \mathrm{E}=\mathrm{hf}$
$3.142 \times 10^{-19}=6.6 \times 10^{-34} \mathrm{f} \checkmark$
$\mathrm{f}=4.74 \times 10^{14} \mathrm{~Hz} \checkmark$
11.2 each element has its own unique energy levels \checkmark and so has its own unique spectra that can be used to identify the element \checkmark

$$
\begin{align*}
12.1 \mathrm{E} & =\mathrm{hf} \tag{2}\\
& =\left(6.6 \times 10^{-34}\right)\left(1.67 \times 10^{15}\right)^{\checkmark} \\
& =1.10 \times 10^{-18} \mathrm{~J} \checkmark \tag{2}
\end{align*}
$$

$12.2 \mathrm{hf}=\mathrm{W}_{\mathrm{f}}+\mathrm{E}_{\mathrm{K}}$
$1.10 \times 10^{-18}=W_{f}+3.0 \times 10^{-19} \checkmark$
$W_{f}=8 \times 10^{-19} \mathrm{~J} \checkmark$
This is the minimum amount of work that must be done to free one electron from the metal.
12.3

- intensity doubled, no of photons doubled \checkmark so no of electrons released is doubled \checkmark
- same frequency, same photon energy \checkmark, electrons ejected with same kinetic energy \checkmark
13.1
- heading
- label and unit - x axis
- label and unit - y axis
- scale - x axis
- scale - y axis
- plotting all points
- best fit line
$13.2 \quad E_{K}=h c \frac{1}{\lambda}-\mathbf{W}_{\mathrm{f}}$
i $W_{f}=y$ int $\checkmark=-3.34 \times 10^{-19} \mathrm{~J} \checkmark$
ii $h c=$ slope $\checkmark=2.0 \times 10^{-7}$
$h=6.67 \times 10^{-34}$
13.3 new line is parallel \checkmark to old but bigger negative y int \checkmark

14.

- 2 semiconductors in contact.
- One n-type has an excess of electrons, while other (p-type) has "holes"
- When a minimum pd is applied in one direction, electrons are excited and jump to the "holes"
- When they make this quantum jump, they release a photon of energy whose frequency matches the energy of the jump

ANSWER SHEET
NAME: \qquad
Question 6.2

(2)

must have zeros at correct positions

Question 10.3

This diagram represents an emf produced by an a.c. generator. On the same diagram, sketch the emf that would be produced by a d.c. generator.

